Termini “frekvence” un “relatīvā frekvence” parasti parādās, ja runājam par varbūtību statistikā vai matemātikā. Varbūtība izsaka ticību, ka noteikts rezultāts tiks sasniegts eksperimentā, testā vai pētījumā; to izmanto, lai noteiktu konkrēta notikuma iespējas. Notikuma varbūtību var noteikt, veicot nelielu eksperimentu un veicot nelielus aprēķinus. Lielākā daļa cilvēku statistikā izmanto varbūtību; daži to izmanto arī citās mācību jomās, ieskaitot matemātiku, zinātni, finanses vai pat azartspēles.
Statistikā biežums ir kopējais reižu skaits, kad dots rezultāts parādījās eksperimentā vai pētījumā; kopējais notikumu reižu skaits. Var teikt, ka frekvence vienkārši nozīmē parādīšanās ātrumu. Piemēram, jūs gatavojaties veikt pārbaudi, lai noteiktu varbūtību iegūt sešinieku, metot kauliņu. Tu meta kauliņu desmit reizes, un kauliņa puse ar sešiem punktiem tajā parādās trīs reizes. Rezultāts “trīs reizes” ir jūsu biežums. Kartītes zīmēšana no kāršu klāja ir vēl viens veids, kā pārbaudīt varbūtību un iegūt frekvenci, ar kādu tiks pievilkta sirds. Izvēlieties piecas kārtis un redziet, cik daudz jūs saņemsiet, uz kurām ir sirds simbols. Teiksim, ka jums ir trīs sirds kārtis - tā ir jūsu biežums. Biežumu var iegūt tūlīt pēc eksperimenta veikšanas, jums nav jāveic aprēķini.
No otras puses, “relatīvā frekvence” ir termins, ko lieto, dalot no tā, cik reizes rezultāts rodas visā mēģinājumu skaitā. Atšķirībā no frekvences, ar kuru jūs varat nākt klajā, vienkārši veicot eksperimentu, relatīvā frekvence ietver dažus vienkāršus aprēķinus. Pieņemsim, ka jūs veicat izlases veida eksperimentu, izmetot monētu, uzzīmējot karti, izmetot diegu vai no maisa paņemot bumbiņas un pēc tam atkārtojot šo darbību “N” reizes. Pēc tam jūs ņemat vērā noteiktā iznākuma reižu absolūto biežumu. Relatīvā biežuma iegūšanai izmantotā formula ir ļoti vienkārša; relatīvais biežums ir vienāds ar rezultātu atkārtošanās reižu skaitu, salīdzinot ar kopējo eksperimenta atkārtošanas reižu skaitu.
Piemēram, jūs veicat izlases eksperimentu, no somas izvelkot krāsainas bumbiņas. Jūs izņemat desmit bumbiņas no maisa un novērojat, ka sarkanās bumbiņas iznāca piecas reizes. Šajā gadījumā relatīvais biežums ir 5/10 vai ½ - 0,5 decimāldaļās. Vēl viens labs piemērs ir ņemt paraugus no datoru monitoru ražošanas, lai pārliecinātos, vai tie darbojas pareizi. Mēs ņemam 50 izlases veida datoru monitorus, lai pārbaudītu un noteiktu trūkumu relatīvo biežumu. Veicot eksperimentu, mēs uzzinām, ka desmit no minētajiem datora monitoriem ir bojāti. Atkal mēs iegūstam relatīvo frekvenci, sadalot bojātos datora monitorus ar pārbaudīto paraugu skaitu; 10 bojāti datoru monitori, dalīti ar 50 pārbaudītiem datoru monitoriem. Mēs iegūstam 10/50 jeb 1/5, kas ir 0,2.
1.Frekvence ir rezultāta parādīšanās reižu skaits, savukārt “relatīvā frekvence” ir rezultāta iegūšanas reižu skaits, dalīts ar eksperimenta atkārtošanas reižu skaitu..
2.Frekvenci var viegli noteikt, veicot vienkāršu eksperimentu un atzīmējot, cik reizes notiek attiecīgais notikums; aprēķini nav nepieciešami. No otras puses, relatīvo biežumu nosaka, izmantojot vienkāršu dalīšanu.